Comparison of Modeling Infant Mortality Rate in West Sumatra and West Java Province in 2021 Using Negative Binomial Regression

Authors

  • Afdhal Rezeki Afdhal Universitas Negeri Padang
  • Fadhilah Fitri
  • Dodi Vionanda
  • Dony Permana

DOI:

https://doi.org/10.24036/ujsds/vol2-iss2/156

Keywords:

Regresi Poisson, Overdispersion, Generalized Linier Model (GLM), Regresi Binomial Negatif

Abstract

In Poisson regression analysis, there is an assumption that must be met, namely equidispersion (the variance value of the response variable is the same as the mean). In reality, conditions like this very rarely occur because overdispersion usually occurs (the variance value of the response variable is greater than the mean). One way to overcome this problem is to use the Negative Binomial regression method. The aim of this article is to obtain the best modeling results in Negative Binomial regression analysis to overcome overdispersion in cases of infant mortality in West Sumatra Province and West Java Province. The model obtained using Negative Binomial regression produces an AIC value in West Sumatra province of 192.65 which is smaller than the AIC value in West Java Province it was 283.47. Based on the Negative Binomial regression model equation obtained in West Sumatra Province, it can be explained that the number of health centers (X3) has a significant influence on the infant mortality rate and in West Java Province it can be explained that the number of medical personnel (X1) has a significant influence on the infant mortality rate.

Published

2024-05-31

How to Cite

Afdhal, A. R., Fadhilah Fitri, Dodi Vionanda, & Dony Permana. (2024). Comparison of Modeling Infant Mortality Rate in West Sumatra and West Java Province in 2021 Using Negative Binomial Regression. UNP Journal of Statistics and Data Science, 2(2), 137–144. https://doi.org/10.24036/ujsds/vol2-iss2/156

Most read articles by the same author(s)

<< < 2 3 4 5 6 7 8 9 > >>