Pemodelan Waktu Survival Pasien Tuberkulosis menggunakan Regresi Cox Proportional Hazard dengan Data Tersensor
DOI:
https://doi.org/10.24036/ujsds/vol1-iss4/65Abstrak
Cox proportional hazard regression is a type of survival analysis that can be applied to tuberculosis cases. This study aims to determine the Cox proportional hazard regression model and the factors that influence the survival time of tuberculosis patients at RSUP Dr. M. Djamil Padang. The survival period used is the time when the patient is taking TB treatment at RSUP Dr. M. Djamil Padang in 2021 until the patient is declared dead. The method used in the Cox Proportional Hazard Regression analysis is the Maximum Partial Likelihood Estimation Method. By using the cox proportional hazard regression model, the factors that influence the survival time of tuberculosis patients at RSUP Dr. M. Djamil's is BMI (X3) , leukocytes (X5) , fever (X9) , shortness of breath (X11) , and decreased appetite (X12) . The Cox Proportional Hazard Regression Model obtained is hi(t) = h0(t) exp(1,315X3 + 1,224X5 + 1,138X9 +1,623X11 + 1,251X12).
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Elsa Oktaviani, Nonong Amalita, Atus Amadi Putra, Dony Permana
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.