Sentiment Analysis of TikTok Application on Twitter using The Naïve Bayes Classifier Algorithm
DOI:
https://doi.org/10.24036/ujsds/vol1-iss5/103Kata Kunci:
Naïve Bayes Classifier, Sentiment Analysis, TikTok, TwitterAbstrak
TikTok is a popular social media platform that has gained a lot of attention lately. People of all ages are using this application to share short videos with their friends and followers. The content on TikTok is diverse and can be tailored to individual preferences, but there have been concerns about the presence of vulgar content that can be viewed by minors as there are no age restrictions. This has led to public scrutiny of the application on social media platforms like Twitter. To address this issue, sentiment analysis was conducted on reviews of the TikTok application to help users make informed decisions about its use. The aim of this analysis was to determine whether people's opinions about TikTok were positive or negative. The results were classified into two categories positive and negative using the Naïve Bayes Classifier method. The analysis was carried out using 80% training data and 20% testing data, and the results showed an accuracy rate of 80.32%, with a recall value of 97% and a precision value of 78%. This information can help users make informed decisions about using the TikTok application.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Denia Putri Fajrina, Syafriandi Syafriandi, Nonong Amalita, Admi Salma
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.