PT.Telkom (Tbk) Stock Price Forecasting Using Long Short Term Memory (LSTM)

Penulis

  • hanifah nazhiroh unp
  • Dina Fitria Universitas Negeri Padang
  • Dony Permana Universitas Negeri Padang
  • Zilrahmi Universitas Negeri Padang

DOI:

https://doi.org/10.24036/ujsds/vol2-iss4/223

Kata Kunci:

Forecasting, Long Short Term Memory (LSTM), MAPE

Abstrak

The movement of the share price of PT.Telkom (Tbk) fluctuates so it is necessary to do forecasting analysis. Forecasting the share price of PT.Telkom (Tbk) can be done using the Long Short Term Memory (LSTM) method. LSTM is a development of the Recurrent Neural Network (RNN)method. In this study using PT.Telkom Stock price data for 2018-2023 and PT.Telkom (Tbk) stock price data after Covid-19 (20121-2023) this is done to see if a significant price decline has an impact on forecasting the stock price for the next period. Both data have a very small difference in MAPE value. The data that has the smallest MAPE value is PT.Telkom (Tbk) stock price data after Covid-19 (20121-2023) with a MAPE of 0,93% with an optimal parameter combination of neurons, batch size 64, and epoch 80.

Unduhan

Diterbitkan

2024-11-28

Cara Mengutip

nazhiroh, hanifah, Dina Fitria, Dony Permana, & Zilrahmi. (2024). PT.Telkom (Tbk) Stock Price Forecasting Using Long Short Term Memory (LSTM). UNP Journal of Statistics and Data Science, 2(4), 414–421. https://doi.org/10.24036/ujsds/vol2-iss4/223

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 3 4 5 6 7 8 9 > >>